Module Description(模块说明)
Active contour segmentation using robust statistic.
This module is a general purpose segmenter. The target object is initialized by a label map. An active contour model then evolves to extract the desired boundary of the object.
使用稳健统计的主动等值分割。
这个模块是一个通用分割器。 目标对象由标签映射初始化。然后活动轮廓模型演变为提取物体的期望边界。
Tutorials(教程)
First run(首先运行):
Give a rough estimate of the object volume and use the editing module to paint several non-zero labels, called seeds in the following, in the object. Run the module using the default parameters.
粗略估计对象体积,并使用Editor模块在对象中绘制几个非零标签,称为种子。 使用默认参数运行模块。
Note(注意):
The Approximate volume is just a rough upper limit for the volume. It should be at least the size of the object. This is because when the volume reaches that, the program must stop. However, other criteria may stop the algorithm before the volume reaches this value.
近似体积只是体积的大致上限。 它应该至少是对象的大小。 这是因为当体积达到时程序必须停止。 但是其他标准可能会在体积达到此值之前停止计算。
The positions of the seeds have to be in the object, preferably close to center.
种子的位置必须在对象组织中,最好靠近中心。
Troubleshooting(故障排除):
Surface is too rough : Try Increase “Boundary smoothness”
表面太粗糙 :尝试增加“边界平滑度”
Leakage into thin/narrow regions : Try Increase “Boundary smoothness”
泄漏到薄/狭窄区域:尝试增加“边界平滑度”
leakage into similar (but still different) intensity regions (which is not necessarily thin) :Try Increase “Intensity homogeneity”
泄漏到类似(但仍然不同)的强度区域(不一定很薄):尝试增加“强度均匀性”
Some regions are missed : Try (either one): Increase “Max volume”、 Decrease"Intensity homogeneity"、 Decrease “Boundary smoothness”
某些区域漏掉:尝试(任一)① 增大最大体积 ② 降低“强度均匀性” ③ 降低“边界平滑度”
Some regions are missed, at the same time leakages to some other regions: Try (either one)
Increase “Intensity homogeneity”、Add some other seeds
某些区域漏掉,同时泄漏到其他区域: 试试(任一)① 增加”强度均匀性” ② 增加一些种子。
Panels and their use(面板及用法)
Parameters pane(参数面板):
Approximate volume: The estimated upper limit of the target volume,The resulting volume will be less or equal than this value.
近似体积:目标体积的估计上限, 结果体积将小于或等于此值。
Intensity homogeneity: If the target contains homogeneous intensity, then give a close-to-1 value here.
强度均匀性:如果目标强度均匀,则在此给出接近1的值。
Boundary smoothness: Larger value will result in smoother boundary and a more spherical looking result.
边界平滑度:设置的值越大,边界越平滑且外形越接近球形。
Output Label Value: Defined the label value of the output. Also refer to the “Multiple-value label map handling” above.
输出标签值:定义输出的标签值。 另请参阅“多值标签映射处理”。
Max running time: The upper limit for program running time.
最大运行时间:程序运行时间的上限。
IO panel(输入输出面板):
Input Image: The image to be segmented.
输入图像:要分割的图像。
Label Image: The label map providing initial seeds.
标签图像:提供初始种子的标签图。
Output Volume: The output volumetric image.
输出体数据:输出体积图像(标签映射体数据)。
Use Cases(应用示例)
Most frequently used for these scenarios(最常用于这些场景):
Use Case 1, Meningioma segmentation from MRI
使用案例1:MRI提供脑膜瘤分割
Use Case 2, Right kidney segmentation from CT image
使用案例2:从CT图像右肾分割
Use Case 3, Left kidney segmentation from CT image
使用案例3:CT图像的左肾分割
Use Case 4, Lung segmentation from CT image
使用案例4:CT图像的肺分割
Use Case 5, Left caudate segmentation from MR image
使用案例5:从MR图像中左侧尾状核分割